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SUMMARY

In this work we present a numerical method for solving the incompressible Navier–Stokes equations in an
environmental fluid mechanics context. The method is designed for the study of environmental flows that
are multiscale, incompressible, variable-density, and within arbitrarily complex and possibly anisotropic
domains. The method is new because in this context we couple the embedded-boundary (or cut-cell)
method for complex geometry with block-structured adaptive mesh refinement (AMR) while maintaining
conservation and second-order accuracy. The accurate simulation of variable-density fluids necessitates
special care in formulating projection methods. This variable-density formulation is well known for
incompressible flows in unit-aspect ratio domains, without AMR, and without complex geometry, but here
we carefully present a new method that addresses the intersection of these issues. The methodology is
based on a second-order-accurate projection method with high-order-accurate Godunov finite-differencing,
including slope limiting and a stable differencing of the nonlinear convection terms. The finite-volume
AMR discretizations are based on two-way flux matching at refinement boundaries to obtain a conservative
method that is second-order accurate in solution error. The control volumes are formed by the intersection
of the irregular embedded boundary with Cartesian grid cells. Unlike typical discretization methods, these
control volumes naturally fit within parallelizable, disjoint-block data structures, and permit dynamic AMR
coarsening and refinement as the simulation progresses. We present two- and three-dimensional numerical
examples to illustrate the accuracy of the method. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We have developed a new method for the study of highly nonlinear, multiscale, incompressible
environmental fluid mechanics. With this method we solve the variable-density incompressible
Navier–Stokes equations. Flows in oceans, lakes, and rivers are well represented by these equa-
tions. Examples of such flows are internal gravity waves, coastal plumes, density currents in
lakes, buoyancy-driven exchange flows, flows in branched estuarine slough networks, and flows
past highly complex topography. Issues involved include variable-density, anisotropic domains,
complex and often sparse geometries, large ranges in spatial and temporal scales, moving fronts
and highly complex mixing zones. We hope to provide a predictive tool for both engineering
and science with an enhanced ability to interpret and extend the results of field and laboratory
studies.

In this section the key features of our method for simulating environmental fluid mechanics are
outlined. Specifically, the governing equations, accuracy of the method, spatial discretization, and
implementation are discussed.

1.1. Background on projection methods

Historically, computational environmental fluid mechanics methods have focused on simplifying
either the governing equations or the dimensionality of the problem (and often both). The equa-
tions have been reduced to as simple as the one-dimensional (1D) Bernoulli equations, yet most
numerical methods for environmental fluid mechanics solve either shallow-water, hydrostatic,
and/or Boussinesq approximations in 1D, 2D, or 3D. For a review of existing environmental fluid
mechanics models, see [1, 2].

Our approach solves the incompressible Navier–Stokes equations in either 2D or 3D, with a
variable-density forcing following [3, 4], and exhibits second-order-accurate convergence in time
and space. Solving the non-hydrostatic equations is essential for accurately simulating flows with
pressure distributions that significantly deviate from hydrostatic (i.e. p �=�ogz+ po). Avoiding the
(inviscid) Boussinesq approximation permits the simulation of flows where density deviations are
significant enough to alter the motions through more than just the buoyancy term.

There is a range of approaches for solving the incompressible Navier–Stokes equations. Methods
include artificial compressibility methods [5], Lagrangian vortex methods [6], and different flavors
of projection methods, among others. Most numerical methods for environmental fluid mechanics
assume either homogeneous or Boussinesq fluids. This work is relatively new in that the projection
formulation eliminates Boussinesq errors in all but the viscous term. Viscous-term Boussinesq
errors (which are very small when density variations are small and even smaller when the Reynolds
number is large) can be eliminated with a minor extension following [3].

Projection methods are a powerful solution technique for the incompressible Navier–Stokes
equations pioneered in a series of papers by Chorin [7–9]. In Chorin’s work, he developed a
numerical projection method using a discrete form of the Helmholtz–Hodge decomposition. In
projection methods the solution is advanced by predicting a velocity field that does not satisfy a
discrete divergence constraint and then by correcting the predicted velocity so that it is divergence-
free. In the predictor step, it is necessary to explicitly approximate the advective terms and (for
viscous problems) to subsequently solve a parabolic equation implicitly for the predictor velocity.
The correction is achieved by solving an elliptic equation implicitly via a Helmholtz–Hodge
decomposition (see [10]). For the parabolic solves in the predictor step, researchers have used
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first-order-accurate backward-Euler methods, second-order-accurate Crank–Nicolson [11], and
implicit Runge–Kutta methods [12–14].

Chorin’s original work was based on first-order-accurate discretizations. The projection method
was then extended to second-order accuracy by Bell et al. [11]. The method was further extended to
variable-density flows in [4], and subsequently to adaptive mesh refinement (AMR) in [3, 15, 16].
A recent extension of the methodology for the study of homogeneous incompressible fluids in
arbitrarily complex geometry is presented in [17]. Various other researchers have extended the
projection method, including [18–24] among others. See [25] for a more detailed history of
projection methods. In this paper we extend the approach of [11, 17] to environmental fluid
mechanics problems, where all of the following factors are important: variable-density, anisotropic
mesh spacing, AMR, and complex geometry.

The algorithms in this research yield second-order-accurate (in time and space) solution errors
for the governing equations. For second-order methods, when the mesh spacing is refined by a
factor of two, the error is reduced by a factor of four [11]. Higher-order methods can resolve
flow features that lower-order methods can only resolve with significantly finer (and therefore less
efficient) grids. In this work, and in the work of [26], we systematically show second-order-accurate
results for both the decoupled operators and for a range of test problems.

1.2. Background on embedded-boundary (EB) spatial discretizations

To study fluid systems, researchers typically use one of two spatial reference frames: Eulerian or
Lagrangian. The Lagrangian reference frame follows individual fluid parcels as they move through
space and time, while the Eulerian reference frame focuses on fixed regions in space where fluid
may pass. For this work we use the Eulerian reference frame. A discussion of Lagrangian methods
is beyond the scope of this work; the interested reader will find [27–30] informative. With an
Eulerian method, researchers typically discretize space using one of three methods: finite element,
finite difference, or finite volume.

Typical finite-element methods have the benefit of irregular elements. These elements have the
attractive characteristic that, with refinement, they can accurately fit arbitrarily complex geome-
tries, yet they necessitate unstructured data structures for the entire flow field (unstructured data
structures are discussed below), and sometimes lead to non-conservative discretizations. Galerkin
finite-element methods have an established community and have been successfully used by many
researchers [31–37].

The most basic finite-difference methods utilize ‘stair-step’ (i.e. in or out rectangular cells)
approximations to irregular geometry and suffer from a catastrophic lack of accuracy for non-
orthogonal geometries. See [26] for an analysis of geometric error due to stair-stepping. Owing
to their implementation simplicity, immersed-boundary and ghost-fluid methods [38–40] are
attractive finite-difference-based methods but suffer due to conservation issues stemming from
a non-flux- based approach. In immersed-boundary methods the boundary is treated as a body
force, which is quite different from finite-volume-based methods where fluxes are imposed at
boundaries.

The finite-volume method is an extremely attractive spatial discretization method due to its
conservation properties. In finite-volume methods the flow domain is decomposed into individual
control volumes where discretizations are based on fluxes across faces. A flavor of finite-volume
methods is the mapped-grid method, in which rectangular control volumes are mapped onto a
curvilinear coordinate system through a mathematical transformation or mapping function. Mapped
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grids are a very promising method, yet they are not able to handle arbitrarily complex geometries
(for lack of a mapping function).

To approximate complex geometry we use the EB (or cut-cell) method [12, 13, 17, 41, 42],
an elegant finite-volume technique where control volumes are formed by the intersection of the
domain with rectangular grid cells. The intersections can be computed to arbitrary accuracy and are
generated with an O(ND−1/D) algorithm from distance-type functions (where N ≡ total number
of control volumes, including regular, and where D is the dimensionality of the problem).

Grid generation for EB methods is robust, ‘water-tight’ and accurate, and naturally fits with
geometric coarsening/refinement used with AMR and multigrid. A major advantage of EB finite-
volume methods is that the stability and robustness properties are not dependent on geometry.
Other methods often require a high degree of care in grid generation to ensure stable and robust
simulations.

With this efficient and accurate EB spatial description, the geometry can have non-unit-aspect
ratios and be arbitrarily complex, yielding tractable, efficient and accurate conservative finite-
volume discretizations. This geometric capability permits the accurate study of a variety of complex
fluid flows, such as those that occur on coastal shelves, in branched estuarine slough networks,
in complex closed conduits, and even past the detailed structures of benthic invertebrates. The
current generation of numerical methods for numerically simulating environmental fluid mechanics
is severely limited in its ability to model such complex geometries.

1.3. Background on block-structured AMR

If control volumes are computationally represented on a rectangular array, or on a union of
rectangular arrays, the mesh is termed structured; otherwise the mesh is termed unstructured.
Meshes that can change as a simulation progresses are referred to as temporally adaptive. Meshes
that are not uniform throughout the spatial domain are referred to as spatially adaptive.

Models that use unstructured meshes have cumbersome data structures that are computa-
tionally less efficient to access and require more complex mathematical techniques to maintain
accuracy. While unstructured mesh models have the benefit of spatial adaptivity, the use of
refinement in time on unstructured grids is largely unexplored. Non-adaptive, structured mesh
codes utilize highly efficient data structures but require global refinement that is prohibitively
costly for multiscale flows. The most successful structured, spatially and temporally adaptive
codes use blocks to partition the domain into regions of equal refinement. Block-structured
adaptive codes benefit from highly efficient data structures, the ability to locally refine/coarsen as
a simulation progresses, and well-understood conservative finite-volume discretization methods.
Very few computational fluid mechanics models use meshes that are adaptive in time and
space.

Adaptive methods for the numerical solution of partial differential equations concentrate compu-
tational effort when and where it is most needed. For over two decades, block-structured AMR
has proven useful for overcoming limitations in computational resources and accuracy in such
fluid fields as astrophysics [43, 44], combustion [45, 46], atmospheric science [47], applied math-
ematics [3, 48–53], aerospace engineering [54], and ink-jet printer design [23]. In environmental
fluid mechanics, most prior mesh-adapting work has focused on static, one-way nested refinement
strategies, where finer grids are nested within coarser grids and these grids do not adapt in time. In
one-way nesting, there is no feedback from the fine grid to the coarse grid [55], while in two-way
nesting, the solution on the fine grid is coupled to the solution on the coarse grid [3, 16, 56, 57].
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Conservative flux-based two-way AMR coupling has desirable well-posedness properties; e.g.
divergence operators have telescoping sums [48].

The physical processes that environmental fluid mechanics researchers study often contain spatial
and temporal scales that span several orders of magnitude. Second-order-accurate AMR with
conservative two-way nesting provides the capability to simultaneously capture scales ranging many
orders of magnitude (e.g. from hundreds of kilometers to meters). For example, to simulate oceanic
internal gravity waves, coarse grids are placed over the entire flow domain, and recursively finer,
nested grids adaptively track wave generation, propagation, interaction and dissipation, expending
computational resources only where and when they are needed. With AMR, one can ‘zoom
in’ on moving regions and accurately capture the important flow physics at multiple scales.
Accurately capturing a range of spatial and temporal scales is critical to accurately simulating
complex environmental fluid mechanics. The finite-volume EB approach naturally fits within
parallelizable, disjoint-block data structures, and permits dynamic AMR coarsening and refinement
as the simulation progresses (see Figure 4 for an example of an EB AMR grid). The application of
AMR to the study of environmental fluid mechanics in complex geometry is a new and powerful
technique. In this research we use fully adaptive, block-structured, two-way nested meshes coupled
with the EB finite-volume method.

1.4. Implementation

This work was implemented within, and extended, the Chombo [58, 59] AMR framework. Chombo
provides the necessary data structures to implement the highly complex, adaptive algorithms
required for solving the incompressible Navier–Stokes equations in irregular domains. Chombo
builds and executes on a range of computational platforms, from laptops to parallel supercomputers.
Chombo is implemented primarily in the C++ programming language. For performance reasons,
Chombo also provides an interface to FORTRAN for fast, regular array operations. Chombo also
provides an elegant dimension-independent programming paradigm that accelerates the develop-
ment cycle due both to the ease of debugging in reduced dimensions and to a single code-base for
multiple dimensions.

2. GOVERNING EQUATIONS

The governing equations that we solve with this method are the variable-density incompressible
Navier–Stokes equations. These well-known partial differential equations are given in the following
sub-section; this is followed by a sub-section on boundary conditions, and finally we have a
sub-section that reviews the mathematical background for our variable-density projection.

2.1. Incompressible Navier–Stokes equations

The governing equations are composed of:
Momentum balance:

ut +(u·∇)u=−∇ p

�
+g+��u (1)
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Divergence-free constraint:

∇ ·u=0 (2)

Density conservation:

�t +u·∇�=0 (3)

Passive scalar transport:

st +u·∇s=ks�s+Hs (4)

We have intentionally omitted the Coriolis term in the momentum balance. For problems where
the Coriolis term is relevant, this term can be added to our method by following [19]. Various
methods can be used to incorporate free-surface effects; in this work, we have taken a rigid-lid
approximation.

We assume constant dynamic viscosity, �, and take the kinematic viscosity, �, as constant. We
note that this makes the viscous-term Boussinesq, and makes the method not a pure variable-
density formulation as in [3]. In future work this approximation can be eliminated with a minor
extension following [3], where �≡�/�(x, t). We note that these Boussinesq errors are very small
when density variations are small and even smaller when the Reynolds number is large. It is
important to note that the governing equations are non-Boussinesq for all but the viscous term,
and as such, they eliminate inviscid Boussinesq errors. This non-Boussinesq capability enables the
method to go beyond the limits of existing Boussinesq-based solvers. In future work, the constant
� approximation will be relaxed by following the work of Puckett et al. [22], where the full viscous
stress tensor was used in their variable-density formulation.

2.2. Boundary conditions

We define our flow domain as �, and the boundary of this domain as ��. We decompose �� into
domain boundaries (faces of a box) and embedded boundaries (complex geometry inside the box),
as is indicated in Figure 1. We permit different boundary conditions for each variable (u, p, �,
and s).

Figure 1. Embedded and domain boundary faces.
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We define n as the unit normal to the boundary which points into the fluid. We also define s1
and s2 as unit vectors tangential to the boundary, where n⊥s1⊥s2. In the following we describe
the boundary conditions in detail.

On solid surfaces the following velocity boundary conditions are permitted:

• Dirichlet for any solid surface (EB or domain boundary): u=b.
• Free-slip for domain walls: u·n=0, ∇(u·s1) ·n=0 and ∇(u·s2) ·n=0.

At inflow boundaries we specify u. For outflow boundaries in the hyperbolic operators we specify
the tangential velocity components by characteristic extrapolation normal to the domain face.
For outflow boundaries in the viscous operators we specify a zero normal-gradient condition on
velocity.

We prescribe pressure boundary conditions to be compatible with velocity boundary conditions
and the governing equations. Specifically, for solid surfaces (where u·n=0) and at inflow boundary
faces we prescribe,

∇ p

�
·n=g ·n (5)

For outflow boundaries we prescribe hydrostatic pressure,

p= patm+�ogz (6)

where g is the gravitational acceleration, and where z=0 is the top plane of � (see � in Section 2.2)
in direction D. Recall that for this paper we take a ‘rigid-lid’ approach.

We prescribe scalar boundary conditions so as to be compatible with velocity boundary condi-
tions. Note that density boundary conditions are treated the same as scalars. Specifically, for solid
surfaces we prescribe no flux,

∇s ·n=0 (7)

For inflow boundaries we specify scalars to be of some known value,

s= f (x, t) (8)

We extrapolate scalars normal to outflow boundaries in the hyperbolic operator.

2.3. Projection formulation

Following the work of Chorin [6–10] we shall use the Helmholtz–Hodge decomposition theorem.
A vector field w on a region of space � can be uniquely decomposed in the form

w=u+∇� (9)

��=∇ ·w (10)

∇ ·u=0 (11)

∇�·n=w ·n at �� (12)

u·n=0 at �� (13)
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With this decomposition we can define an orthogonal projection operator P, which maps w onto
its divergence-free part u. The projection operator is the following linear operator:

P≡I−Q (14)

Q≡∇�−1∇ (15)

where I is the identity matrix. Notice that

Pu=u (16)

P∇�=0 (17)

and

w=Pw+∇� (18)

See [10] for a more rigorous mathematical discussion of the projection operator and the Helmholtz–
Hodge decomposition.

For variable-density flows we follow [4] and utilize a density-weighted decomposition

w=u+ ∇�

�
(19)

The density-weighted projection operator is the following linear operator:

P� ≡I−Q� (20)

Q� ≡ 1

�
∇L−1

� ∇ (21)

where I is the identity matrix and where L� is ∇ ·(1/�)∇. Notice that we still have

P�u=u (22)

P�
∇�

�
=0 (23)

and

w=P�w+ ∇�

�
(24)

In Section 3.6 we will define discrete versions of the projection operator.

3. SPACE DISCRETIZATION

In this section we describe the discretization of space. In the first sub-section we define the EB
finite-volume method for non-unit-aspect ratio complex geometry; this is followed by a sub-section
that describes the block-structured AMR spatial description. Subsequently, we present detailed
sub-sections that define the spatial discretizations needed for the partial differential equations
(elliptic, parabolic, and hyperbolic) that compose the incompressible Navier–Stokes equations.
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3.1. EB spatial discretization

To discretize complex geometries we utilize the EB (or cut-cell) method [12, 13, 41, 42]. In the EB
method, control volumes are formed by the intersection of the domain with Cartesian grid cells.

With the EB method, for the bulk of the flow, which is O(N ) control volumes, we compute
on a regular Cartesian grid composed of rectangular parallelepiped (or cuboid) control volumes.
We use an EB description for the O(N (D−1)/D) control volumes that intersect the boundary. The
advantages of an underlying rectangular grid are as follows: grid generation is tractable, with a
straightforward coupling to block-structured, AMR; the discretization technology is proven (e.g.
well-understood consistency theory for conservative finite differences); geometric multigrid for
elliptic solvers is optimal; and away from boundaries, the method reduces to a standard conservative
finite-difference method.

Example 2D and 3D EB control volumes are shown in Figure 2. In this figure the curves indicate
the intersection of the exact boundary with a Cartesian cell. Note that to enable second-order-
accurate methods for this work, we approximate face intersections using quadratic interpolants,
but the EB method can be extended to arbitrary accuracy.

To discretize our conservation laws using embedded boundaries, all we need are the following
quantities: volume fractions, area fractions, centroids, boundary areas, and boundary normals.
Given these geometric quantities on a fine grid, we can compute the same quantities on coarser
grids without reference to the original geometry (by geometric coarsening). This permits highly
efficient, dynamic coarsening and refinement of arbitrarily complex geometry as the simulation
progresses (e.g. AMR and multigrid).

Embedded boundaries are ‘water-tight’ by construction; i.e. if two control volumes share a face,
they both have the same area fraction for that face. Unlike typical complex-geometry discretization
methods, the EB control volumes naturally fit within parallelizable, disjoint-block data structures.

3.1.1. Geometry generation. The underlying discretization of space is given by rectangular control
volumes on a Cartesian grid: �id =[id�xd , (id +ud)�xd ], i∈ZD , where D is the dimensionality
of the problem, �xd is the mesh spacing in direction d , and u is the vector whose entries are all
ones. In the case of a fixed, irregular domain �, the geometry is represented by the intersection of
� with the Cartesian grid. We obtain control volumes Vi=�i∩� and faces Ai±1/2ed , which are
the intersection of �Vi with the coordinate planes {x : xd =(id ± 1

2 )�xd}. Here ed is the unit vector
in the d direction. We also define AB

i to be the intersection of the boundary of the irregular domain
with the Cartesian control volume: AB

i =��∩�i. We will assume here that there is a one-to-one
correspondence between the control volumes and faces and the corresponding geometric entities
on the underlying Cartesian grid. The description can be generalized to allow for boundaries whose
width is less than the mesh spacing or boundaries with sharp trailing edges.

Figure 2. On the left is an example 2D embedded-boundary control volume; arrows indicate fluxes. On
the right are example 3D embedded-boundary control volumes.
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In order to construct conservative finite-difference methods, we will need only a small number
of real-valued quantities that are derived from geometric objects.

• Areas and volumes are expressed in these dimensionless terms:

Volume fractions : �i=|Vi|
D∏

d=1

1

�xd
(25)

Face apertures : �i±(1/2)ed =|Ai±(1/2)ed |
∏
d ′ �=d

1

�xd ′
(26)

Boundary apertures : �Bi =|AB
i |�x−(D−1)

1 (27)

We assume that we can compute estimates of the dimensionless quantities that are sufficiently
accurate (i.e. O(�x2) for apertures, O(�x) for volume fractions).

• The locations of centroids, and the average outward normal to the boundary, are given
exactly by

Face-centroid : xi+(1/2)ed = 1

|Ai+(1/2)ed |
∫
Ai+(1/2)ed

xdA (28)

Boundary face-centroid : xBi = 1

|AB
i |
∫
AB
i

xdA (29)

Outward normal : nBi = 1

|AB
i |
∫
AB
i

nB dA (30)

where nB is the outward normal to ��, defined for each point on ��. Again, we assume
that we can compute estimates of these quantities that are accurate to O(�x2).

Using just these quantities, we can define conservative discretizations for all the required operators.

3.1.2. EB examples. Now we present example visualizations to illustrate our ability to approximate
complex geometry using the EB method. It is important to note that in this paper we visualize
the embedded boundaries as piecewise planar (due to our graphics software), when in fact we
use piecewise quadratic approximations for face intersections. Our first example is generated from
imaging data of a coral (see Figure 3). This example illustrates our ability to handle arbitrarily
complex geometry in a completely automated and efficient way given a distance function (for
this example the distance function is given by a CT scan). In the next example (see Figure 4)
we present South China Sea bathymetry with AMR boxes (where each box can be assigned to a
unique processor in a parallel simulation).

3.2. AMR spatial discretization

Now we describe block-structured AMR in more detail. Our approach will be to express the AMR
discretizations in terms of the corresponding uniform grid discretizations at each level (see Sections
3.3–3.5), followed by the appropriate conservative, second-order-accurate inter-level operators that
make multilevel discretizations possible (see Section 4.2).
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Figure 3. Flow past a coral as computed with the numerical method. Streamtubes indicate flow direction
(flow is from top to bottom) and the surface colors indicate current speed near the coral (blue is slow,

red is fast). Thanks to Dr Jaap A. Kaandorp for the Madracis Mirabilis CT scan data.

Figure 4. EB approximation of the South China Sea. Black boxes are a decomposition of the
coarsest level; red boxes are finer grids. Each box is further sub-divided into individual control
volumes. The red boxes refine both the Luzon Strait vicinity (right) and the Dongsha Island
region (left). Upper right is Taiwan; lower right is the Philippines; mainland China is upper

left. The East–West slice is colored by distance to the bed.
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Figure 5. Block-structured adaptive mesh refinement.

Figure 6. Flux matching at coarse–fine interfaces.

For this paper we have imposed the constraint that the EB interface cannot cross the coarse–fine
interface. This additional constraint is for ease of implementation and will be relaxed in future
work, similar to [41]. A further constraint imposed for this paper is that all AMR levels are
advanced with the same time step; i.e. we are not subcycling the levels as is done in [3, 15, 16].
In the AMR research community, methods that do not subcycle AMR levels are termed composite
methods, and as such, ‘mass’ conservation is easily maintained with a flux-based approach. See
[15] for subcycling issues.

In adaptive methods, one adjusts the computational effort locally to maintain a uniform level of
accuracy throughout the problem domain. Refined regions are organized into rectangular patches,
as in Figures 4 and 5. Refinement is possible in both space and time (though, as stated above, for
this work all levels use the same time step). AMR allows the simulation of a range of spatial and
temporal scales.

Three basic requirements are necessary to maintain conservation and accuracy with AMR:
(1) match fluxes (see Figure 6) conservatively at coarse–fine interfaces (this leads to a refluxing
step for the coarse levels); (2) use interpolation to provide ghost cell values for points in the
stencil extending outside of the grids at that level; (3) conservatively coarsen and refine data when
regridding. We maintain accuracy and strict conservation with embedded boundaries and AMR.

3.3. Divergence of fluxes

Our finite-volume discretizations are formulated in a divergence form, and as such we need to
define a conservative divergence operator for discrete fluxes at face-centroids (higher than second-
order-accurate finite-volume methods need face-averaged fluxes [48]).
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Using just the geometric quantities from Section 3.1.1, we can define conservative discretizations
for the divergence operator. Let F=(F1, . . . ,FD) be a function of x. Using the divergence theorem
we have

∇ ·F≈ 1

|Vi|
∫
Vi

∇ ·FdV = 1

|Vi|
∫

�Vi
F ·ndA

≈ 1

|Vi|

[( ∑
±=+,−

D∑
d=1

±|Ai±(1/2)ed |Fd(xi±(1/2)ed )

)
+|AB

i |nBi ·F(xBi )

]
(31)

where (31) is obtained by replacing the integrals of the normal components of the vector field F
with the values at the face-centroids. It is this form that we use when conservatively discretizing
divergence operators.

3.4. Elliptic and parabolic equations

The projections and predictor step require the solution of elliptic and parabolic partial differential
equations. The density-weighted projections require the solution of: ∇ ·(1/�)∇�= f , while the
parabolic predictor step requires the solution of �t =���+S. In this sub-section we define our
implicit solution methodology for the elliptic equations. We use the constant coefficient, parabolic
methodology developed in [13] for the parabolic equation solves. A numerical convergence study
for the parabolic methodology is given in Section 5.2.3.

Now we define our discretizations of the variable-coefficient, elliptic, partial differential equation
on an irregular domain �. It is this variable-coefficient elliptic equation that we use in the density-
weighted projections (DWPM1 and DWPM2) of Section 3.6.2. The PDE is as follows:

∇ ·�∇	 = f on �

�
�	

�n
= gN on ��

(32)

or

	=gD on ��

where gD and gN are Dirichlet and Neumann boundary conditions. To numerically solve (32)
we need to spatially discretize 	, and so we define a discrete variable �, �i≈	(i�x). Using the
discretization of the divergence defined in (31), we can define a discretization of the variable-
coefficient elliptic equation as follows:

∇ ·�∇�≈ Lh[�,�]i= fi (33)

Lh[�,�]i= 1

|Vi|

[( ∑
±=+,−

D∑
d=1

±|Ai±(1/2)ed |Fd
i±(1/2)ed

)
+|AB

i |FB

]
(34)

where fi= f (i�x) and the fluxes Fd and FB are linear combinations of �i, �i and the boundary
values (F=�∇�). We avoid problems arising from arbitrarily small values of |Vi| in the denomi-
nator (of (34)) by recalling (25) and solving

�iL
h[�,�]i=�i fi (35)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:473–514
DOI: 10.1002/fld



486 M. F. BARAD, P. COLELLA AND S. G. SCHLADOW

When D=3 the fluxes (Fd
i+(1/2)e1

, in direction d) are given by bilinear interpolation of centered
differences (or linear when D=2). Explicitly, bilinear interpolation of fluxes can be written as
an iteration of linear interpolation of fluxes in the two directions that are not normal to the face.
For example, given the face with outward unit normal e1, with centroid x, define the linearly
interpolated flux in the d (d �=1) direction by

Fd
i+(1/2)e1 = 


�i+�i+e1

2

(�i+e1 −�i)

�x1
+(1−
)

�i+e1±ed +�i±ed

2

(�i+e1±ed −�i±ed )

�x1


 = 1− |x ·ed |
�xd

± =
{+, x ·ed>0

−, x ·ed�0

(36)

The bilinear interpolation of the flux for the face with normal e1 is as in [13]. The boundary
conditions are also as in [13], but are subject to (32).

One of the target application areas for this research is studying high-aspect-ratio geophysical
flows. These flows typically have horizontal scales that are larger than vertical scales. When
solving elliptic partial differential equations for large-aspect-ratio systems it is common to reduce
the total number of grid points by setting �x �=�z �=�y. When the aspect ratio is more than
(roughly) 2, traditional multigrid smoothers fail to dampen high-frequency errors and multigrid
convergence stalls. This is a well-known problem, and can be easily seen by noting that the elliptic
stencil becomes dimensionally decoupled when �x��y, see [60]. There are two ‘fixes’ that are
traditionally employed: (1) anisotropic coarsening in multigrid, (2) line solving, or (3) both [60].
For our approach in this research we chose to implement a line solver that is both AMR and EB
aware.

We extend our single-grid solution methodology [13] for solving (32), and the heat equation, by
using essentially the same second-order-accurate (non-EB) AMR elliptic algorithm as is outlined
in [15, 16, 61].

When we have anisotropic control volumes we use a line solver for multigrid smoothing;
otherwise we use a colored Gauss–Siedel smoother. For the line solver we have an additional
requirement that our disjoint-box layout has one box per (connected) line per level (with as many
grids in the horizontal as needed). In the elliptic solve we use a residual-correction form and
impose homogeneous boundary conditions at the coarse–fine interface.

A pseudo-code description of our line-smoother algorithm is given in Figure 7. For the line-
smoother algorithm we initialize the correction � to zero; then we evaluate our horizontal elliptic
stencil (Lh

xy) and compute a new right-hand side (g) where �=1/4diag(Lh) and where (I −
�Lh

xy)0=0. Subsequently, we do a tridiagonal solve using our new right-hand side (g=�R). Then
we apply the correction to e (where e is a correction since we are already in the residual-correction
form). We use the Thomas Algorithm, a simplified version of Gaussian elimination for tridiagonal
systems, when doing the tridiagonal solve. Where we have covered cells (i.e. �=0) we set the
diagonal term to 1 and the two off-diagonal terms to zero. This decouples covered cells from the
non-covered control volumes and permits the line solver to handle arbitrarily complex geometries.
A validation of the line solver is given in Section 5.2.2 and [26].
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Figure 7. Pseudo-code description of the line smoother algorithm.

3.5. Hyperbolic equations

We use an explicit second-order-accurate, stable hyperbolic methodology for computing discrete
approximations to advective terms. The methodology was developed in [41, 62], and we make
a few minor deviations from [41] for incompressible flow. Specifically, we use the single-level
hyperbolic methodology with flux matching at the coarse–fine interface, and conservative linear
interpolation from coarse levels to fine ghost cells. The method is stable (and accurate) in the
absence of physical diffusion for both the transport of momentum (i.e. the Euler equations) and
for pure scalar advection.

The procedure for computing the advection terms is outlined as follows:

1. Extrapolate the advective normal velocities to face-centers at tn+1/2.
2. MAC-project the advective normal velocities to obtain divergence-free advective velocities.
3. Extrapolate the remaining quantities—tangential velocities, density (�) and scalars (s)—to

face-centers at tn+1/2.
4. Compute the advective terms as a combination of stable and conservative approximations.

In the following sub-sections we describe this in detail. A numerical validation of the hyperbolics
is given in Section 5.2.1.

3.5.1. Extrapolate advective velocities to face-centers at n+ 1
2 . Now we describe the Godunov

methodology used to compute second-order-accurate approximations to the advective velocities.
The method is a characteristic extrapolation procedure. For a given scalar s we extrapolate, in
direction d , to the low (L) side of the i+ 1

2ed face-center, and at time n+ 1
2 , by

s̃ L ,n+1/2
i+(1/2)ed

=sni + �xd
2

�s
�xd

∣∣∣∣
n

i
+ �t

2

�s
�t

∣∣∣∣
n

i
(37)

This is a Taylor expansion in time and space. Similarly for component d ′ of the velocity we
extrapolate in the d-direction to the low (L) side of the i+ 1

2ed face-center,

ũL ,n+1/2
d ′,i+(1/2)ed

=und ′,i+
�xd
2

�ud ′

�xd

∣∣∣∣
n

i
+ �t

2

�ud ′

�t

∣∣∣∣
n

i
(38)
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and on the high (H ) side of the i− 1
2ed face-center,

ũH,n+1/2
d ′,i−(1/2)ed

=und ′,i−
�xd
2

�ud ′

�xd

∣∣∣∣
n

i
+ �t

2

�ud ′

�t

∣∣∣∣
n

i
(39)

Since we are extrapolating advective components only, we evaluate (38) and (39) with d ′ =d . We
approximate r -order-accurate spatial derivatives in direction d by

�	

�xd

∣∣∣∣
n

i
≈	lim,r

xd ,i (40)

where the limited slopes are defined in Section 3.5.4. For these advective component extrapolations
we define preliminary advective velocities by interpolating to face-centers

uprei+(1/2)ed
= I ii+(1/2)edu

n
i (41)

We then approximate the time-derivative term for each direction d ,

�ud
�t

∣∣∣∣
n

i
≈Hn

d,i−
D∑

d ′=1
uaved ′,i(ud)

lim,r
xd′ ,i (42)

where

uaved,i = 1
2 (u

pre
d,i+(1/2)ed

+upred,i−(1/2)ed
) (43)

the transverse (d ′ �=d) derivatives are upwinded and where we define the source term of the dth
component,

Hn
d,i≡

1

�n
L[und ,�]i−

[∇d p

�

]n−1/2

i
+gnd,i (44)

Equations (38) and (39) yield the advective velocities on the low and high side of face-centers.
For covered faces in irregular cells we extrapolate both the extrapolations, (38) and (39), and the
preliminary advective velocities (41) to covered faces [41].

Now we solve a Riemann problem by upwinding to choose the state for each direction d
advective velocity,

ũn+1/2
d,i+(1/2)ed

= R(ũL ,n+1/2
d,i+(1/2)ed

, ũH,n+1/2
d,i+(1/2)ed

,upred,i+(1/2)ed
) (45)

where R is defined in (65).
We MAC-project ũn+1/2

i+(1/2)ed
. This results in a divergence-free uADVi+(1/2)ed

advective velocity field,

uADVi+(1/2)ed =Pmac
� (ũn+1/2

i+(1/2)ed
) (46)

where Pmac
� is defined in (72).

3.5.2. Extrapolate remaining quantities to face-centers at n+ 1
2 . We are now in a position to

extrapolate the remaining quantities to half time at face-centers. We do this similarly to how we
extrapolated the advective velocities. However, now we use the divergence-free advective velocities
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AN ADAPTIVE CUT-CELL METHOD 489

at face-centroids, with a non-conservative (but stable) discretization of the advective terms in the
time-derivative approximation. Here we present the method for a generic scalar s, which will
represent the tangential velocities, density, or passive scalars that we are advecting with the flow.
We approximate the spatial derivatives in (37) using our limited spatial-derivatives method

�s
�xd

∣∣∣∣
n

i
≈slim,r

xd ,i (47)

see Equation (63). For the time derivative we use the face-centered advective velocities

�s
�t

∣∣∣∣
n

i
≈Hn

i −
D∑

d=1
uaved,i s

lim,r
xd ,i (48)

where

uaved,i = 1
2 (u

ADV
d,i+(1/2)ed +uADVd,i−(1/2)ed ) (49)

and where we define the source term,

Hn
i = L[sn,ks]i+Hn

s,i (50)

In Equation (50), L is the Laplacian operator with diffusion constant ks . For covered faces in
irregular cells we extrapolate both the extrapolations (37) (high or low, depending on what is
needed) and the advective velocities to covered faces using the method of Colella et al. [41].

Subsequently, we solve a Riemann problem for each face direction (d) using the divergence-free
face-centered velocities uADVi+(1/2)ed

,

s̃n+1/2
i+(1/2)ed

= R(s̃ L ,n+1/2
i+(1/2)ed

, s̃ H,n+1/2
i+(1/2)ed

, (ud)
ADV
i+(1/2)ed) (51)

where R is defined in (65). For tangential velocities at face-centers (including covered faces) we
enforce a divergence-free condition by correcting with the MAC-gradients

ud
′

i+(1/2)ed =u∗,d ′
i+(1/2)ed

−
[

∇d ′
�

�n+1/2

]
i+(1/2)ed

Now we have s̃n+(1/2)
i+(1/2)ed

at regular, irregular, and needed covered face-centers.

3.5.3. Compute advective terms. Since the advective velocities are exactly discretely divergence-
free, i.e.

Dmac ·uADV=0 (52)

then the discrete analog of

(u·∇)c=∇ ·(cu)=∇ ·F (53)

is true. We will proceed by selectively using (53) to conservatively discretize the advective terms.
Following [41], we compute a stable (S) hybridization of conservative (C) and non-conservative
(NC) divergences,

(D ·F)
S,NC
i =�i(D ·F)Ci +(1−�i)(D ·F)NCi (54)
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where

(D ·F)NCi = ∑
±=+,−

D∑
d=1

±Fi+(1/2)ed

�xd
(55)

and where (D ·F)Ci is defined below. Note that for (55) we use covered face values for faces with
zero apertures, where the covered face values are obtained by extrapolating from the interior as
in [41].

For velocity at irregular control volumes and for scalars at all control volumes we define (D ·F)Ci
using the flux-based divergence of (31). For velocity component d ′ at regular control volumes we
define (D ·F)Ci as follows:

(D ·F)Ci =
D∑

d=1

[
ud,i+(1/2)ed +ud,i−(1/2)ed

2

(
ud ′,i+(1/2)ed −ud ′,i−(1/2)ed

�xd

)]
(56)

Notice that � in the denominator of (31) cancels with the � of (54), eliminating small � division
issues.

A non-stable (NS) but conservative update for density would be

�n+1,NS,C
i =�ni −�t (D ·F)Ci (57)

while a stable but non-conservative update would be

�n+1,S,NC
i =�ni −�t (D ·F)

S,NC
i (58)

We would like to update (58), but we need to account for the missing mass. The missing mass is
(57) minus (58) scaled by the volume, and using (54) is

�Mi=�t |Vi|(1−�i)[(D ·F)NCi −(D ·F)Ci ] (59)

To enforce exact mass conservation, we use volume-weighted redistribution of this mass to neigh-
boring control volumes

�n+1,S,C
i′ =�ni′ −�t (D ·F)

S,NC
i′ + �i′∑

i′′∈N (i) �i′′
�Mi

|Vi′ | (60)

or

(D ·F)
S,C
i′ =(D ·F)

S,NC
i′ − �i′∑

i′′∈N (i) �i′′
�Mi

|Vi′ |�t (61)

More generally (for velocity too),

(D ·F)
S,C
i′ =(D ·F)

S,NC
i′ − 1∑

i′′∈N (i) �i′′
�i(1−�i)[(D ·F)NCi −(D ·F)Ci ] (62)

where i′ ∈N (i), and where N (i) is a set of indices whose components differ from those of i by no
more than one and can be reached by a monotonic path.
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3.5.4. Limited-slope computation. Here we define the limited-slope operator in direction d , used
in (40), (42), (47), and (48). The second-order (r =2) limited-slope calculation is

	lim,2
xd ,i =

⎧⎪⎨
⎪⎩
sign(	i+ed −	i−ed )min(2|�i+ed −�i|,2|�i−�i−ed |, 1

2 |�i+ed −�i−ed |)
�xd

, b>0

0, b�0

(63)

where

b=(	i+ed −	i) ·(	i−	i−ed ) (64)

The fourth-order (r =4) accurate slope calculation is as in [41]. Using slope limiters allows the
method to robustly handle sharp gradients, with only a local degradation in accuracy.

3.5.5. Upwinding. Our Riemann solution in (45) and (51) is simple upwinding,

R(	L,	H,ud)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

	L if ud>0

	H if ud<0

1

2
(	L+	H) if ud =0

(65)

3.6. Discretizing projections

We need to define projections for two data types: face-centered and cell-centered. The face-centered
operator Pmac

� is defined in Section 3.6.1, while the cell-centered projection operator Pcc
� is defined

in Section 3.6.2.
Velocity boundary conditions for the velocity operators are specified in Section 2.2, and pressure

boundary conditions for the pressure operators are specified in Section 2.2. Note that the pressure
difference (pn+1/2− pn−1/2) elliptic solves (in DWPM2) have a desirable homogeneous boundary
condition at outflow, eliminating the need to approximate a pressure (as is the case for DWPM1
at outflow).

3.6.1. Face-centered MAC projection. Now we define a projection that is based on face-centered
advective velocities. This is used to correct the advective velocity (e.g. in u·∇u) as was noted at
the beginning of this section. The Hodge decomposition of the advective velocities is

u∗,d
i+(1/2)ed

=udi+(1/2)ed +
[∇d�

�

]
i+(1/2)ed

(66)

We first define the discrete operators needed for the projection; then we define the face-centered
projection operator.

Face-centered divergence: We define face-centered vector fields F=(F1, . . . ,FD), such that
Fi+(1/2)ed is at face-centers. For regular control volumes (non-EB) we define a discretized diver-
gence operator on such a vector field as follows:

Dmac ·F≡ 1

|Vi|

[( ∑
±=+,−

D∑
d=1

±|Ai±(1/2)ed |Fd(xi±(1/2)ed )

)]
(67)
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where (67) is obtained by replacing the integrals of the normal components of the vector field F
with the values at face-centers. For irregular control volumes we define a discretized divergence
operator on such a vector field as follows:

Dmac ·F≡ 1

|Vi|

[( ∑
±=+,−

D∑
d=1

±|Ai±(1/2)ed |Fd(xi±(1/2)ed )

)
+|AB

i |nB
i ·F(xBi )

]
(68)

where (68) is obtained by replacing the integrals of the normal components of the vector field F
with the values at the face-centroids.

Face-centered gradient: We define the face-centered gradient Gmac,d [�]i+(1/2)ed for each direc-
tion d using

Gmac,d [	]i+(1/2)ed = 	i+e−	i

�xd
(69)

To scale the MAC-gradient by density (�i+(1/2)ed ) we divide as follows:

[
Gmac,d�

�

]
i+(1/2)ed

=(�xd ,i+(1/2)ed )

/(
�i+�i+ed

2

)
(70)

For irregular faces, we use a linear interpolation operator I i+(1/2)ed
fc to move data from face-centers

to face-centroids, see [13].
MAC-projection: Our face-centered MAC projection operator does the following:

udi+(1/2)ed =Pmac
� (u∗,d

i+(1/2)ed
) (71)

We use the face-centered, discrete operators to define the MAC-projection

Pmac
� ≡I− 1

�
Gmac

[
Dmac 1

�
Gmac

]−1

Dmac (72)

The first step is to compute the MAC-divergence of (66) and then solve a variable-coefficient (see
Section 3.4) elliptic equation for �i given boundary conditions on � (see Section 2.2),

Dmac

[
1

�i+(1/2)ed
Gmac

d �i

]
=Dmac[u∗,d

i+(1/2)ed
] (73)

We subsequently compute the divergence-free advective velocities

udi+(1/2)ed =u∗,d
i+(1/2)ed

−
[
Gmac,d�

�

]
i+(1/2)ed

(74)

A numerical convergence study for the density-weighted MAC-projection is given in Section 5.2.4.

3.6.2. Cell-centered approximate projections. Now we define an approximate projection that is
based on cell-centered discrete velocity data. This is used to correct the predictor velocity as
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was noted at the beginning of this section. Now our Hodge decomposition of the cell-centered
velocities is

u∗
i =ui+

[∇�

�

]
i

(75)

Below we define the cell-centered discretizations needed to define our cell-centered projection
operator.

Average cell to face: In what follows we need to interpolate the cell-centered w∗
i (advective

components only) using a second-order-accurate interpolant to face-centers (A), then second-order
to face-centroids (I ),

w
∗,d
i+(1/2)ed

= I i+(1/2)ed
fc (AC→F(w∗)) (76)

So we need to define our averaging operator to move data from cell-centers to face-centers

[AC→F	]i+(1/2)ed ≡ 	i+	i+ed

2
(77)

Cell-centered gradient: In what follows we also need to define Gcc[	]i. For component d, the
cell-centered gradient is

Gcc
d [	]i= Gmac

d [	]i+(1/2)ed +Gmac
d [	]i−(1/2)ed

2
(78)

where the face-centered gradients for uncovered faces are computed by (69). For covered faces,
we extrapolate to the covered face-center by using uncovered values, i.e. (69). For regular control-
volumes this procedure reduces to a traditional centered difference.

Cell-centered projection: Here we are solving a similar problem as in the MAC case. To do this,
we average cell-centered velocities to faces, apply the MAC projection, and average the gradient
field back to cell-centers. Our cell-centered projection operator does the following:

ui=Pcc
� (w∗

i ) (79)

Now we define our cell-centered projection

Pcc
� ≡I−Qcc

� (80)

Qcc
� ≡ 1

�
Gcc

[
Dmac 1

�
Gmac

]−1

[Dmac ·AC→F] (81)

and where AC→F is an averaging operator that moves data from cell-centers (C) to face-centers (F).
The cell-centered projection uses a MAC-projection to obtain the face-centered gradient, which

we then use to compute Gcc. A numerical convergence study for the density-weighted MAC-
projection is given in Section 5.2.4.

Filtering divergent velocity modes: Since our cell-centered approximate projection methods have
a null space where divergent velocity fields can exist [63], we damp those modes with a divergence
sensitive filter:

un+1
i :=un+1

i +�GDun+1
i (82)
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We discretize the divergence D using a face-centered discretization, and the gradient G using a
cell-centered discretization, with � as a damping coefficient. GD is an approximation of the matrix-
valued operator �xi �x j . This is algebraically equivalent to a cell-centered projection in which,
instead of solving an elliptic equation, only one Jacobi iteration is taken toward the solution.

4. TIME DISCRETIZATION

In this section we describe the time discretizations necessary to solve the incompressible Navier–
Stokes equations (1)–(4).

4.1. Semidiscrete version of projection formulation

Using the hyperbolic methodology of Section 3.5, the elliptic and parabolic methodology of Section
3.4, and the projection ideas from Section 2.3, we are now in a position to describe our solution
strategy for the incompressible Navier–Stokes equations. The procedure is outlined as follows:

1. Compute the advective terms ([u·∇u]n+1/2 and [u·∇s]n+1/2) as a combination of stable and
conservative approximations (using an exactly divergence-free advective velocity).

2. Update passive scalars by solving a parabolic system (this reduces to an explicit update if
there is no scalar diffusion).

3. Predict velocity field (u∗) by solving a parabolic system.
4. Correct the predicted velocity by approximately projecting it onto a divergence-free space.

The detailed algorithm for advancing a single time step is presented sequentially in the following
sub-sections.

4.1.1. Compute advective terms. Compute the cell-centered advective terms: [u·∇u]n+1/2, [u·
∇�]n+1/2, and [u·∇s]n+1/2. See Section 3.5.

4.1.2. Update scalars. We discretize the scalar parabolic systems in time using the L0-stable
method of Twizell, Gumel, and Arigu (TGA) [14], which was also described in [12, 13]. We use
TGA because the Crank–Nicolson method is unstable for EB and for locally refined meshes (see
[12, 15] for a discussion). The scalar update is

sn+1=(I −�1L)−1(I −�2L)−1[(I +�3L)sn+(I +�4L) f n+1/2
s �t] (83)

where

f n+1/2
s ≡−[u·∇s]n+1/2+Hn+1/2

s (84)

and where �1–�4 are defined in [13]. Note that for simplicity in (83), the Laplacian operators (L)
include the diffusion constant (ks).

4.1.3. Predict velocity. We predict the new velocity by solving parabolic systems for the cell-
centered u∗. The parabolic time-discretized momentum equations are

un+1=(I −�1L)−1(I −�2L)−1[(I +�3L)un+(I +�4L) f n+1/2�t] (85)
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where

f n+1/2≡−[u·∇u]n+1/2− ∇ pn+1/2

�n+1/2
+gn+1/2 (86)

The discretizations of the advective terms are defined in Section 3.5. Since we do not know the
new gradient of pressure and cannot ensure a divergence-free un+1, we take a predictor step for u∗
(using TGA),

u∗ =(I −�1L)−1(I −�2L)−1[(I +�3L)un+(I +�4L) f n−1/2�t] (87)

where

f n−1/2≡−[u·∇u]n+1/2− ∇ pn−1/2

�n+1/2
+gn+1/2 (88)

Note that for simplicity in (85) and (87) the Laplacian operators (L) include the diffusion
constant (�).

4.1.4. Correct predicted velocity. We correct u∗ by approximately projecting it onto a divergence-
free space. We do this by using Pcc

� , a cell-centered discretization of the projection operator, and
update the pressure gradient. Following [4, 11, 20, 64] and (85)–(88) we have

u∗ =un+1+�t
∇ pn+1/2−∇ pn−1/2

�n+1/2
+O(�t3) (89)

We present two different density-weighted approximate projection formulations. The first method
we term DWPM1 and is given by

un+1=Pcc
�n+1/2

(
u∗+�t

(∇ pn−1/2

�n+1/2
−g
))

+�tg (90)

∇ pn+1/2

�n+1/2
= 1

�t
Qcc

�n+1/2

(
u∗+�t

(∇ pn−1/2

�n+1/2
−g
))

(91)

The second method we term DWPM2 and is given by

un+1=Pcc
�n+1/2(u

∗) (92)

∇ pn+1/2

�n+1/2
= ∇ pn−1/2

�n+1/2
+ 1

�t
Qcc

�n+1/2(u
∗) (93)

These approximate cell-centered projections differ from that in the first method, DWPM1, we
solve an elliptic equation for the pressure (pn+1/2), while in the second method, DWPM2, we
solve an elliptic equation for the pressure change (pn+1/2− pn−1/2). With DWPM1 we have the
benefit of an implicit solve for pressure at every time step (at n+ 1

2 ). The DWPM1 drawback is
that it is not clear how to extend the pressure outflow boundary conditions with variable density.
With DWPM2 we have desirable pt =0 outflow boundary conditions, but we have an incremental
update for the pressure (pn+1/2) at every time step. A secondary drawback to DWPM2 is that
the pressure and pressure gradient are subject to accumulation of high-frequency error for flows
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where the pressure is nearly constant in time. This is due to the fact that there is no mechanism
to damp these errors with an incremental update (DWPM1 damps the errors via the elliptic solve
for pn+1/2; see [64] for a relevant discussion). Nonetheless, DWPM2 produces good results as is
seen in Section 5.5.1.

As part of the cell-centered projection, our last step is to apply a filter to damp divergent modes
that are in the null space of Pcc

� (see Section 3.6.2).

4.2. AMR discretization issues

We extend our single-level solution methodology (as described in the previous sections) for
solving the incompressible Navier–Stokes equations, by extending the single-level operators in
a conservative and second-order-accurate manner. The adaptive pseudo-code is nearly identical
to the single-grid algorithm with the exception of regridding and coarse–fine boundary condi-
tions. Specifically, we match fluxes at coarse–fine interfaces (e.g. in the MAC-projection) and
use conservative second-order-accurate coarsening and refinement when regridding. Regridding is
done using second-order-accurate conservative linear interpolation from coarse regions to newly
fine regions, and second-order-accurate conservative coarsening (i.e. classic averaging) from fine
to newly coarse regions. With this accurate regridding step, we maintain second-order accuracy
of the entire method. Refinement is restricted to a fixed number of levels as is specified before
a simulation is run. Recall that for this paper we do not permit the coarse–fine interface to cross
the EB, and we do not subcycle the AMR levels (subcycling maintains the same advective CFL
condition on each level) as is done in [3, 15, 16].

A pseudo-code description of our composite EB AMR INS algorithm is presented in Figure 8.
For the PiecewiseLinearFillPatch() function we do conservative linear interpolation based on coarse
data to fine ghost cells, as in [3, 16]. For the ExtrapToFacesAtHalfTime() function we use our single-
level infrastructure. Our discrete composite (comp) operator Pmac,comp

� is the multilevel analog to the
single-level Pmac

� operator. Through a multi-level coupled solve, Pmac,comp
� maintains conservation

at coarse–fine interfaces by setting coarse fluxes equal to the average of the fine fluxes at coarse–
fine interfaces (as in Figure 6). The Hyperbolic() function computes the advective terms by level.
Our CompositeParabolic() function is as in [13], except we use coarse–fine interpolation and
refluxing methodology to couple the levels. The Pcc,comp

� is related to the Pmac,comp
� in the same

way as for the single-level solves (where we interpolate data back and forth between cell- and
face-centers).

In our Regrid() step we loop through coarse AMR levels, tagging control volumes needing
refinement, typically with a user-supplied threshold based on vorticity magnitude or density gradi-
ents (other tagging criteria are possible, such as geometric locations or passive scalars); cluster the
tags into disjoint blocks using [65]; copy or conservatively linearly interpolate the old data to the
new data structures; and project the regridded velocity, as in [3, 16]. When a tagging threshold is
specified, the refinement algorithm refines regions that exceed the threshold (leaving other regions
for possible coarsening). The refinement algorithm is sensitive to the tagging criteria in the sense
that if one is not careful, excessive or no refinement is possible; it typically takes a few trial
runs to set the threshold correctly. In future work, we aim to take a more mathematical approach
to refinement by utilizing an error-based refinement criterion (see [16, Chapter 5]). Note that a
maximum number of refinement levels is specified before the start of a simulation, so endless
refinement does not occur. The regridding frequency is specified by a CFL-type constraint, where
we do not want tagged fluid regions to escape to coarser control volumes.
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Figure 8. Pseudo-code description of the adaptive incompressible Navier–Stokes algorithm. Notation for
this figure is described in Section 4.2.

5. RESULTS

Here we demonstrate the accuracy of the method for studying variable-density incompressible
flows with a series of test problems. The test problems build in difficulty, starting with the accuracy
of the main operators followed by several fluid mechanics examples.

5.1. Accuracy measures

To test the convergence properties of the method, we conduct convergence studies. Where our test
problems have unknown exact solutions, we conduct asymptotic convergence studies using at least
three sets of simulations, coarse (c), medium (m) and fine (f), and compute errors (ei) between
simulation solutions (	). In the absence of an exact solution, the asymptotic solution errors are
computed as follows:

ec≡Cm→c(	medium)−	coarse (94)

em≡C f→m(	fine)−	medium (95)

where Cm→c and C f→m are discrete coarsening operators (that coarsen discrete cell-centered values
from fine grids to coarser grids) with accuracy greater than or equal to the expected solution error
accuracy (in this paper we use second-order-accurate coarsening operators; i.e. traditional ‘sum
and divide’ averaging). For further discussion of coarsening operators, we refer the reader to [48]
where higher-order-accurate discrete coarsening operators are necessary. We then compute norms
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of these errors, and subsequently the asymptotic convergence rate of the method for the particular
test problem and norm, as in [11, 26].

We compute volume-weighted p-norms as follows:

L p ≡‖e‖p = 1

|�|

⎛
⎝∑

l

∑
i∈�l

valid

|eli |p|V l
i |
⎞
⎠

1/p

(96)

where |�| is the volume of the flow domain, eli is the discrete error at control volume location i
and level l, and |V l

i | are the individual control volume magnitudes for level l, see (25). When
comparing medium (em) and coarse (ec) errors, we compute convergence rates as follows:

rp =
log

( ‖ec‖p

‖em‖p

)

log

(
hc

hm

) (97)

The expected asymptotic solution error convergence rates for the whole method are r1=2,
r2=1.5, and r∞ =1, as in [26, 41].

5.2. Convergence properties of the main operators

In this section we present numerical converge studies for the main operators that we use to solve
the governing equations: hyperbolic, elliptic, and parabolic. We also present convergence results
for the density-weighted projections.

5.2.1. Hyperbolic equations. Our test problem here is scalar advection (st +u·∇s=0) of a
Gaussian bump down an inclined channel. The channel is inclined so as to test a non-trivial
embedded boundary (i.e. the control volumes span a range of geometries). The channel is parallel
to the vector n=[1.13,1.14,1.0] (where the third component is used only for the 3D case). In 3D
the channel is a cylinder, in 2D it is a constant-width channel. The channel has a radius of 0.212,
and passes through the origin of the unit square/cube domain. The constant, unit magnitude
velocity field is parallel to the channel axis. The exact solution is s(x, t)=e−r2 , where r(x, t) is
the distance from the (moving) Gaussian origin xb(t) to a point x in the channel. The Gaussian
origin is initialized as the domain origin and is translated down the channel with u; i.e. xb= tu.

A 2D isotropic convergence study for this problem is shown in Table I. A 2D AMR isotropic
convergence study for this problem is shown in Table II. A 2D anisotropic convergence study
for this problem is shown in Table III. A 3D anisotropic convergence study for this problem is
shown in Table IV. For hyperbolic problems we expect the convergence rates for our method to
be r1=2.0,r2=1.5,r∞ =1.0, where we indicate convergence rates rp as in (97). The convergence
tables in this section indicate that we are achieving the expected rates.

5.2.2. Elliptic equations. To illustrate our ability to solve anisotropic elliptic problems, here we
present results from a simple test case, where the exact solution is�=sin(1.3x)sin(2.2y)[sin(3.1z)].
Consider a sphere of radius 1

4 centered in a unit domain (i.e. a cube with sides of length 1).
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Table I. Hyperbolic test problem: isotropic grid, solution error and convergence rates:
�xc= 1

256 =2�xm=4�x f; a 2D calculation.

Variable Medium–coarse error Fine–medium error Rate

L1 norm of scalar error 2.2876e−05 5.6418e−06 2.0196e+00
L2 norm of scalar error 6.6815e−05 1.9502e−05 1.7765e+00
l∞ norm of scalar error 8.3294e−03 4.1744e−03 9.9664e−01

Table II. Hyperbolic test problem: isotropic grid; solution error and convergence rates:
�xc= 1

16 =2�xm=4�x f; a 2D calculation with three AMR levels having nref=4.

Variable Medium–coarse error Fine–medium error Rate

L1 norm of scalar error 1.5316e−04 3.5190e−05 2.1218e+00
L2 norm of scalar error 5.7150e−04 1.3468e−04 2.0852e+00
L∞ norm of scalar error 1.3367e−02 5.7748e−03 1.2109e+00

Table III. Hyperbolic test problem: anisotropic grid (�x=4�y); solution error and convergence rates:
�xc= 1

128 =2�xm=4�x f; a 2D calculation.

Variable Medium–coarse error Fine–medium error Rate

L1 norm of scalar error 1.1499e−04 3.0643e−05 1.9078e+00
L2 norm of scalar error 5.7566e−04 2.0620e−04 1.4812e+00
L∞ norm of scalar error 1.6868e−02 8.4677e−03 9.9426e−01

Table IV. Hyperbolic test problem: anisotropic grid (�x=�y=2�z), solution error and convergence rates:
�xc= 1

16 =2�xm=4�x f; a 3D calculation.

Variable Medium–coarse error Fine-medium error Rate

L1 norm of scalar error 8.4448e−03 2.1650e−03 1.9637e+00
L2 norm of scalar error 1.7622e−02 4.4385e−03 1.9893e+00
L∞ norm of scalar error 5.4763e−02 3.2235e−02 7.6459e−01

Computed using two parallel processors.

Our 2D fine grid has 32×640 (i.e. 20:1 aspect ratio) level-zero cells (including covered cells)
and our AMR refinement ratio is two. The coarse solution is on the same grid layout as the fine
solution, but coarsened by a factor of two.

We solve an elliptic problem using our AMR multigrid method and present the expected
multigrid convergence history in Figure 9. Notice that the error is reduced by a constant factor by
each v-cycle, as is expected by multigrid theory [60]. The method maintains second-order accuracy
(see Table V for 2D AMR results, and Table VI for 3D single-grid results).
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Figure 9. Multigrid convergence for a 20:1 aspect ratio 2D AMR solve.

Table V. Elliptic test problem: solution error convergence rates for a 20:1 aspect ratio AMR solve.

Variable Coarse error Fine error Rate

L1 norm error 9.717318e−05 2.456552e−05 1.983924e+00
L2 norm error 1.909830e−04 4.851628e−05 1.976903e+00
L∞ norm error 1.051167e−03 2.836212e−04 1.889955e+00

�x f= 1
32 and �xc=2�x f, 2D.

Table VI. Elliptic test problem: solution error convergence rates for a 4:4:1 aspect ratio single-grid solve.

Variable Coarse error Fine error Rate

L1 norm error 6.459656e−05 1.403111e−05 2.202828e+00
L2 norm error 9.121400e−05 2.166892e−05 2.073628e+00
L∞ norm error 3.873316e−03 1.019814e−03 1.925263e+00

�x f= 1
64 and �xc=2�x f, 3D.

For elliptic problems we expect the convergence rates for our method to be r1=2.0,r2=
2.0,r∞ =2.0. The convergence tables in this section indicate that we are achieving the expected
rates.

5.2.3. Parabolic equations. Our test problem here is scalar diffusion (st =��s+H ) in
a unit domain with a centered, embedded sphere of radius 1

4 . Our exact solution s=
sin(5x)sin(5y)sin(5z)cos(t) is imposed as an initial condition (at t=0) and as a Dirichlet
boundary condition. The source term H is computed from the exact solution given �=0.01.
A 2D anisotropic convergence study for this problem is shown in Table VII. A 3D anisotropic
convergence study for this problem is shown in Table VIII.
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Table VII. Parabolic test problem: solution error convergence rates (�x=2�y).

Variable Coarse error Fine error Rate

L1 norm of error 5.242795e−03 1.335954e−03 1.972465e+00
L2 norm of error 7.953677e−03 2.038763e−03 1.963928e+00
L∞ norm of error 3.628538e−02 1.074547e−02 1.755660e+00

�x f= 1
16 and �xc=2�x f; a 2D calculation with two AMR levels having nref=4.

Table VIII. Parabolic test problem: solution error convergence rates (�x=�y=2�z).

Variable Coarse error Fine error Rate

L1 norm of error 4.869321e−03 1.212166e−03 2.006133e+00
L2 norm of error 7.659393e−03 1.922383e−03 1.994334e+00
L∞ norm of error 4.814209e−02 1.298819e−02 1.890098e+00

�x f= 1
16 and �xc=2�x f; a 3D calculation with one AMR levels having nref=4.

For parabolic problems we expect the convergence rates for our method to be r1=2.0,r2=
2.0,r∞ =2.0. The convergence tables in this section indicate that we are achieving the expected
rates.

5.2.4. Density-weighted projections. Here we project a given velocity field onto a divergence-free
space. Our given divergent velocity field is u=(sin(x),sin(2y),sin(3z)). For the density-
weighted projections, which use DWPM1 of Section 4.1.4, we prescribe a density field of �=
2+sin(x)+sin(y)+sin(z). We have a unit domain with a centered embedded sphere of radius 1

4 ,
and our boundary conditions are u·n=0.

Density-weighted MAC projection: 2D and 3D anisotropic convergence studies for this problem
were performed, and resulted in discretely exact, divergence-free velocity fields (as determined by
the multigrid solver tolerance). For MAC-projections we expect exact projections, and this is what
we are achieving.

Density-weighted cell-centered projection: A 2D anisotropic convergence study for this problem
is shown in Table IX. A 3D anisotropic convergence study for this problem is shown in Table X.
For approximate cell-centered projections we expect the (velocity divergence) convergence rates
for our method to be: r1=2.0,r2=1.5,r∞ =1.0, where we indicate convergence rates rp as in
(97). The convergence tables in this section indicate that we are achieving the expected rates.

5.3. Sphere-driven cavity

To test the convergence properties of our incompressible Navier–Stokes algorithm (using DWPM1
from Section 4.1.4), we simulate the 3D evolution of the flow field within a rigidly rotating sphere,
as shown in Figure 10. This is a good problem because both initial and boundary conditions
are smooth–desirable characteristics for numerical convergence studies. This is also a good test
problem because it allows us to test for symmetry in our solution. The sphere has a radius of
0.5m and is centered at the origin. The rigid rotation of the sphere is around the z-axis and is
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Table IX. Cell-centered projection: divergence and convergence rates (�x=2�y).

Variable Coarse divergence Fine divergence Rate

L1 norm divergence 3.527372e−03 9.168277e−04 1.943871e+00
L2 norm divergence 6.020600e−03 2.022201e−03 1.573981e+00
L∞ norm divergence 1.050206e−01 5.342729e−02 9.750238e−01

�x f= 1
128 and �xc=2�x f; a 2D calculation with two AMR levels having nref=2.

Table X. Cell-centered projection: divergence and convergence rates (�x=�y=2�z).

Variable Coarse divergence Fine divergence Rate

L1 norm divergence 1.519918e−01 4.303184e−02 1.820517e+00
L2 norm divergence 2.056353e−01 6.222668e−02 1.724483e+00
L∞ norm divergence 1.299411e+00 6.439040e−01 1.012940e+00

�x f= 1
32 and �xc=2�x f; a 3D calculation with two AMR levels having nref=2.

Figure 10. Sphere-driven cavity. The slice is colored by u-velocity, and instantaneous
streamtubes aid in visualizing the flow.

started smoothly with a cubic polynomial as follows:

uSphere=[−y, x,0] f (t) (98)

f (t)=

⎧⎪⎪⎨
⎪⎪⎩
r

(
−2

(
t

T

)3

+3

(
t

T

)2
)

if t<T

r if t�T

(99)

We set r =0.1 and T =100s, and our kinematic viscosity is �=1m2 s−1, giving an approximately
unit Reynolds number for t/T =0.06, the stopping time for this test. We impose a no-slip boundary
condition on the sphere. This no-slip boundary condition, combined with the rigid rotation of the
sphere, slowly drives the interior fluid into motion, as in Figure 10. The long-term state for this
flow is rigid rotation of the entire fluid, with constant vorticity parallel to the axis of rotation.
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Table XI. Solution error convergence rates: �xc= 1
64 =2�xm=4�x f.

Norm Variable Medium–coarse error Fine–medium error Rate

L1 U-velocity 2.7969e−06 7.9661e−07 1.8119e+00
L1 V-velocity 2.7969e−06 7.9661e−07 1.8119e+00
L1 W-velocity 4.1303e−08 8.7800e−09 2.2340e+00
L1 Pressure 1.2735e−05 2.8007e−06 2.1850e+00
L1 Scalar 5.6574e−05 1.4727e−05 1.9417e+00
L2 U-velocity 4.6086e−06 1.3910e−06 1.7282e+00
L2 V-velocity 4.6086e−06 1.3910e−06 1.7282e+00
L2 W-velocity 9.4183e−08 2.3178e−08 2.0227e+00
L2 Pressure 2.1915e−05 4.6073e−06 2.2499e+00
L2 Scalar 3.0519e−04 1.0762e−04 1.5038e+00
L∞ U-velocity 5.2068e−05 2.5166e−05 1.0489e+00
L∞ V-velocity 5.2068e−05 2.5166e−05 1.0489e+00
L∞ W-velocity 3.0969e−06 7.5950e−07 2.0277e+00
L∞ Pressure 2.3083e−04 6.3841e−05 1.8543e+00
L∞ Scalar 4.0330e−03 2.0201e−03 9.9740e−01

A 3D viscous calculation.

In order to test both the spatial and temporal accuracy of the method, we focus our attention on
early times, t/T =[0,0.06]. We computed 4, 8, and 16 time steps for the coarse, medium, and
fine runs over this time frame, using 64 parallel processors. We use an isotropic mesh spacing (i.e.
�x=�y=�z).

Convergence results from this calculation are presented in Table XI. The results are as we would
expect (r1=2, r2=1.5, and r∞ =1) from such a smooth problem. The results are symmetric as is
apparent by comparing the U -velocity and V-velocity errors.

5.4. Lab-scale density-driven flows

To demonstrate the ability of the method to simulate highly nonlinear, variable-density flows, we
present a classic density-driven exchange flow. This flow is numerically highly demanding due
to the sharp gradients and multiscale nature. With AMR we are able to accurately resolve the
important features.

We simulate flow inside a 0.5m tall, by 3m wide tank. On the left side of the tank we start
with light water, on the right is heavy water. The density ratio of light to heavy fluid is 1000

1030 , and
our kinematic viscosity is �=10−6m2 s−1. A resulting snapshot of the flow as it evolves using
four AMR levels is (zoomed in and) shown in Figure 11(a), with the adaptive control volumes in
Figure 11(b). Notice that we are resolving the boundary layer at the top and bottom of the tank,
and are generating Kelvin-Helmholtz-type instability billows along the sheared density interface;
all while the finest control volumes track the areas with strongest vorticity. A 3D version of
this simulation, using three AMR levels, is shown in Figure 11(c). Notice the boundary layers
developing on the walls; the lobe and cleft structure forming at the fronts; and the 3D turbulent
structure along the shear layer—these are all expected for this well-understood flow (see [66] for
a more detailed study of these types of flows).

To asses the performance of the EB AMR implementation, we compute a series of runs with the
same initial conditions as above, but now the problem is 8m long by 0.5m deep with a centered

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:473–514
DOI: 10.1002/fld



504 M. F. BARAD, P. COLELLA AND S. G. SCHLADOW

(a)

(b)

(c)

Figure 11. (a) and (b) are from a 2D lock-exchange calculation and have four AMR levels. (a) is of
density and (b) shows all of the control volumes. (c) is a 3D lock-exchange calculation with three AMR

levels; density is both isosurfaced and colored on the bottom and back walls.

Gaussian sill. The Gaussian is described by H exp−x2/2�2 , with �2=0.0625m2 and the sill height
H =0.1m. Again, the density ratio is 1000

1030 and our kinematic viscosity is �=10−6m2 s−1. We vary
the coarsest domain and number of AMR levels, and monitor the time spent to compute 10 time
steps.

Table XII presents the performance of the method as computed on a serial workstation. Notice
that we obtain a factor of roughly 9 speedup in execution time for the finest runs. Also notice that
as the finest domain becomes finer our speedup improves. Memory savings are directly related to
the grid saturation, where we define grid saturation to be the ratio of the number of control volumes
used in an AMR calculation to the number of control volumes in an equivalent resolution single-
level calculation. Again, as the finest domain gets finer, the grid saturation gets smaller, indicating
significant memory savings. The combination of algorithmic speedup and memory savings due to
low grid saturation enables simulations that are not otherwise possible.
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Table XII. Performance of the method for 10 time steps of the 2D lock-exchange on a sill problem.

Number of levels Finest domain Grid saturation Speedup

1 2048×128 1 1
2 2048×128 0.120 2.70
3 2048×128 0.088 3.01
1 4096×256 1 1
2 4096×256 0.107 4.06
3 4096×256 0.0435 5.35
1 8192×512 1 1
2 8192×512 0.102 5.19
3 8192×512 0.0325 9.20

Finest domain is the number of control volumes for an equivalent single-level calculation; grid saturation is
the number of control volumes in the AMR hierarchy divided by the finest domain; speedup is the amount of
time taken to solve 10 time steps, normalized by the equivalent single-level calculation. The refinement ratio
is 4 between levels.

Figure 12. A 2D lock-exchange over a Gaussian sill. The top plot is colored by density, the middle plot
is vorticity, and the bottom plot is a passive scalar initialized to depth.

A snapshot of a well-resolved (four AMR levels) 2D run is presented in Figure 12. It is clear
that the calculation is able to resolve boundary layers, shear instabilities on the interface, and the
subsequent mixing that ensues. The 3D effects become significant as the simulation progresses, as
shown in Figure 13.

5.5. Internal-wave generation and dissipation

Oceanic surface tides can induce currents over topography, which in turn generate internal gravity
waves that propagate along density gradients beneath the surface. While the amplitude of oceanic
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Figure 13. A 3D lock-exchange over a Gaussian sill: density is both isosurfaced
and colored on the bottom and back walls.

surface waves due to the tides is typically less than meters, resulting internal-wave amplitudes can
be larger than 100m, and their associated currents can alter surface characteristics enough to make
them visible from space. Their ubiquitous nature is documented in the Global Ocean Associates
Internal Wave Atlas [67], which is a compilation of satellite images of internal waves. Like surface
waves, internal waves can propagate until they dissipate at bathymetric boundaries, and in the
oceanic context there is strong evidence in support of the idea that internal-wave breaking at
boundaries results in mixed fluid which propagates out into the ocean interior [68–70].

In this section we test the ability of the method to generate and dissipate internal waves. This
is not meant to be an exhaustive internal-wave study, but rather to demonstrate that the method
is capable of capturing the important physical processes, where the goal is to test the accuracy of
the method in simulating highly nonlinear, non-hydrostatic, density-driven flows.

5.5.1. Stratified flow past a sill. Using the 2D version of DWPM2 from Section 4.1.4, we simulate
a field-scale, idealized, internal-wave-generating sill. This type of problem has been studied by
Cummins et al. [71], Farmer and Armi [72] and Lamb [73] and is common in oceanographic (and
even atmospheric) settings where currents force a stratified profile past topographic features.

The 2D domain is 256m deep (D) by 4096m long (L), with a Gaussian sill centered 1024m
from the left side. The Gaussian is described by H exp−x2/2�2 , with �2=105m2 and the sill height
H =196m. This makes the shallowest spot above the sill 60m deep. The domain is forced by a
constant inflowing current (U ) from the left face at 0.2ms−1 (which is in the range of tidal currents).
The stably stratified initial and inflowing density profiles are given by �=1001−exp0.0673z kgm−3,
where z=0 is at the top of the domain. The kinematic viscosity is �=10−6m2 s−1. Significant
features of the developed flow are shown in Figure 14.

An internal hydraulic jump forms at the downstream side of the sill, as can be seen in the density
plot. The bifurcation point (at the hydraulic jump), where the strong downslope flow detaches
from the surface, remains relatively stationary throughout the calculation. The downslope currents
entrain lighter waters from the ‘stagnant’ pool just downstream of the bifurcation point, with
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Figure 14. Stratified flow past a sill: significant features at t/T =0.232.

entrained lighter waters advected downstream at the cores of vortices. The vortices are generated
at the shear layer downstream of the bifurcation point. Note that the method robustly handles
sharp gradients in the flow due to the slope limiters of Section 3.5.4 as part of the higher-order
upwind Godunov hyperbolic methodology. At these sharp gradients, the method locally reduces
to first-order accuracy (i.e. in L∞), as is true with traditional shock-capturing schemes.

Three coherent structures are ejected from the hydraulic jump region. First, a long-wavelength
soliton propagates as a wave of depression along the pycnocline (region of rapidly changing density)
and exits the domain at t/T ≈0.24, where we define the advective timescale T ≡ L/U =20480s
(labeled ‘first soliton’ in Figure 14). This long wave is also clearly evident in the density plot.
Next, a shorter wavelength, solitary wave of depression is ejected and propagates downstream
along the pycnocline (labeled ‘second soliton’ in Figure 14). Finally, a large vortex patch is shed
from the shear layer at the internal hydraulic jump and propagates downstream along the bed
(labeled ‘bottom-trapped vortex’ in Figure 14). This vortex core has lighter waters in its core,
but is temporarily trapped along the bottom due to pressure gradients that are stronger than the
buoyancy forcing.

Eventually, we expect the system to reach a dynamic equilibrium state, with continued vortex
shedding, entrainment of lighter waters and internal-wave generation. Note that the initial conditions
are idealized and the flow is likely highly 3D (especially downstream of the sill) in realistic oceanic
settings. Nonetheless, we expect similar features to develop for similar flows past sills.

A convergence study (using 16 processors) for t/T�0.012 of this problem is presented in
Table XIII. We use an isotropic mesh spacing for these runs. The convergence study shows that
we are getting the expected accuracy for this complex field-scale variable–density flow.

5.5.2. Internal-wave breaking on a uniform slope. Here we test our ability to simulate internal-
waves breaking on a slope using DWPM1. For this test case we follow the lab-scale experiments of
[74] and simulate lab-scale breaking of a solitary internal wave on a slope. The experimental tank
is 3m long by 0.5m wide and tall, with the 8:1 (vertical:horizontal) slope meeting the vertical wall
of the tank halfway up. We set free-slip boundary conditions on all walls except on the slope where
we impose a no-slip condition. We initialize the density field as in the top panel of Figure 15,
with salt water, �=1030kgm−3, on the bottom and fresh water, �=1000kgm−3, on the top, and
a perturbed interface following �=−0.25−0.15e−3x2 . We smooth the interface over 0.1 m using
a Heaviside smoothing kernel, Equation (60) in [23]. The kinematic viscosity is �=10−6m2 s−1.

We present our well-resolved 2D AMR calculations in the time sequence of Figure 15. We
present plots from our 3D single-level calculations in Figure 16. In these figures, blue indicates
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Table XIII. Solution error convergence rates: �xc= 1
256 =2�xm=4�x f; a 2D calculation.

Norm Variable Medium–coarse error Fine–medium error Rate

L1 U-velocity 6.3982e−05 1.6330e−05 1.9701e+00
L1 V-velocity 4.7190e−05 1.3562e−05 1.7989e+00
L1 Pressure 3.3547e−04 8.8763e−05 1.9182e+00
L1 Density 2.6976e−03 6.6357e−04 2.0233e+00
L1 Scalar 4.2447e−02 1.2221e−02 1.7963e+00
L2 U-velocity 2.4874e−04 8.1063e−05 1.6175e+00
L2 V-velocity 3.3952e−04 1.2351e−04 1.4589e+00
L2 Pressure 5.2176e−04 2.1079e−04 1.3076e+00
L2 Density 7.2390e−03 1.8842e−03 1.9419e+00
L2 Scalar 2.0823e−01 7.5751e−02 1.4589e+00
L∞ U-velocity 1.1622e−02 5.9232e−03 9.7246e−01
L∞ V-velocity 1.0837e−02 5.7026e−03 9.2630e−01
L∞ Pressure 4.0891e−03 2.5460e−03 6.8354e−01
L∞ Density 5.7153e−02 1.9954e−02 1.5182e+00
L∞ Scalar 5.9958e+00 2.9695e+00 1.0137e+00

fresh water and red is for salt water. In the 2D figures we included the AMR disjoint-block outlines.
In the 3D figures we included an isosurface of the density interface and streamtubes to aid in
visualizing the simulation.

As the stratification perturbation rebounds, it propagates to the right as a wave of depression.
The depression wave begins to shoal on the slope as is evident in the second frame in Figure 15.
Subsequently, the wave continues to propagate to the right but the interaction with the slope
becomes stronger and the wave transforms into a wave of elevation. The wave then breaks on
the slope with a large mass of dense fluid propagating up slope in a large vortex core. As the
wave continues up slope, the breaking becomes more intense and results in stronger and stronger
mixing. Coherent vortex structures are still evident in the final two frames of Figure 15 as the
breaking wave is dissipated.

3D features are illuminated in Figure 16. In this sequence we can see that the wave maintains a
2D form until the fifth frame when side wall effects (likely triggered by side wall bounded Görtler
like instabilities [75], but a detailed analysis is beyond the scope of this paper) propagate into the
interior. Subsequently, the vortex tube bends into a horseshoe-like shape in the sixth frame with
complete turbulent breaking and mixing quickly following.

The AMR boxes in Figure 15 are tracking density gradients and areas of strong vorticity. With
this method we can recursively nest finer grids, resolving important physical processes. The ability
to resolve internal-wave lifecyles with an adaptive method that tracks the important flow physics
is new, and enables simulations that are not otherwise possible.

6. CONCLUSION

6.1. Summary and conclusions

This paper presents an adaptive, Cartesian-grid projection method that is suitable for the accurate
numerical study of incompressible environmental flows in complex domains.
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Figure 15. Internal-wave 2D breaking density plots. Blue is freshwater, red is
saltwater. Boxes indicate refined regions.

We presented a spatial discretization, including the geometric description and methodologies for
solving elliptic, parabolic and hyperbolic PDEs (the component PDEs that make up the incompress-
ible Navier–Stokes equations). The finite-volume cut-cell discretization is relatively new, and is
efficient and robust for all problems we have tried, even where the mesh spacing is anisotropic. This
is because the geometry is generated in O(N (D−1)/D) calculations from easily defined distance func-
tions, is ‘water-tight’ and therefore allows exactly conservative finite-volume discretizations, handles
arbitrarily complex geometries, and is easily coarsened/refined for use in multigrid and AMR.

The adaptive algorithm for solving the incompressible Navier–Stokes equations in complex
geometry with buoyancy forcing extends the work of [3, 4, 7–9, 11, 16, 17] while maintaining
second-order accuracy. This method enables the efficient and accurate simulation of multiscale,
environmental fluid mechanics in realistic complex geometry. For example, the greatest impediment
to the numerical simulation of oceanic internal waves is the broad range of length scales over
which they exist. AMR makes the simulation of multiscale, highly nonlinear internal waves a
tractable problem.
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Figure 16. Internal-wave breaking 3D: initial conditions, shoaling, breaking, mixing, and dissipating. Blue
is freshwater, red is saltwater. Iso-contour of salt–fresh interface, streamtubes for visualization.

We presented results from a range of test cases to validate that our method is in fact second-
order accurate. We first established that the hyperbolic, elliptic, parabolic, and projection operators
performed to the expected accuracy. Subsequently, the lab-scale sphere-driven cavity test showed
that our method is performing as expected. To test the density-weighted projection methods we
simulated lab-scale lock-exchange flows, field-scale stratified flow past a sill, and breaking internal
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waves on a lab-scale slope, with and without AMR. For the flow past a sill test we validated that
our method is second-order accurate, and produced some interesting results (an internal hydraulic
jump, vortex shedding, bottom-trapped vortices, and the generation of internal solitary waves of
depression). Note that in the work of [26] we presented further validation of the method, and the
reader should be aware of this effort.

6.2. Future algorithm work

Our first task for future work is to further optimize the code. Serial and parallel performance
optimizations will benefit the elliptic solver, the slowest part of the algorithm. Optimizations of our
current solver may include reducing the parallel communication costs by (a) utilizing additional
ghost cells, and (b) improving our load-balancing algorithm to account for the complex geometry
overhead. Recent performance results have shown that AMR elliptic solvers, in the absence of
complex geometry, currently scale to O(104) parallel processors [76]. We anticipate that the method
presented in this work will have similar parallel scaling characteristics.

Extension of this work to the case where coarse–fine interfaces are allowed to cross the EB
interface would be useful. This would remove the constraint that all irregular control volumes
have maximum refinement (the hyperbolic case has already been successfully addressed in
[41]). The elliptic and parabolic cases are relatively straightforward and at the interface crossing
requires modification of (1) the Dirichlet EB condition, (2) the coarse–fine interpolation step, and
(3) conservative coarse–fine refluxing. In addition, the crossing algorithm needs high-order
coarsening, as in [48]. An initial implementation of the EB-AMR crossing algorithm for Poisson’s
equation is promising.

An additional useful extension is the ability to subcycle the levels to maintain consistent CFL
numbers across all control volumes. This extension would follow the works of [3, 15, 16].

We anticipate extending the method to higher-order accuracy by following the work of [48]. The
quadrature formulas in [48] provide a systematic mechanism for distinguishing between averages
over cells, averages over faces, and point values, to fourth-order accuracy. This can be combined
with the ideas here and in [77, 78] to obtain fourth-order in space finite-volume discretizations
for mixed hyperbolic/parabolic/elliptic problems on a locally refined grid. It is not obvious how
to extend the Mehrstellen discretizations in [48] to the case where the right-hand side includes a
time derivative, particularly in the case where implicit differencing in time is required. We will
consider a variety of possible approaches here, including fully implicit methods and predictor–
corrector approximations to such methods in which the Mehrstellen correction is treated explicitly.
It is also necessary to compute higher moments of the cut-cell intersections. The fourth-order
spatial approach is straightforward to pursue in conjunction with second-order-accurate temporal
discretizations. However, the extension to higher order in time is still an active research issue [79].
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